Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals: rotational motion effects.

نویسندگان

  • V A Livshits
  • D Marsh
چکیده

A recent survey of nonlinear continuous-wave (CW) EPR methods revealed that the first-harmonic absorption EPR signal, detected 90 degrees out of phase with respect to the Zeeman modulation (V(1)(')-EPR), is the most appropriate for determining spin-lattice relaxation enhancements of spin labels (V. A. Livshits, T. Páli, and D. Marsh, 1998, J. Magn. Reson. 134, 113-123). The sensitivity of such V(1)(')-EPR spectra to molecular rotational motion is investigated here by spectral simulations for nitroxyl spin labels, over the entire range of rotational correlation times. Determination of the effective spin-lattice relaxation times is less dependent on rotational mobility than for other nonlinear CW EPR methods, especially at a Zeeman modulation frequency of 25 kHz which is particularly appropriate for spin labels. This relative insensitivity to molecular motion further enhances the usefulness of the V(1)(')-EPR method. Calibrations of the out-of-phase to in-phase spectral intensity (and amplitude) ratios are given as a function of spin-lattice relaxation time, for the full range of spin-label rotational correlation times. Experimental measurements on spin labels in the slow, intermediate, and fast motional regimes of molecular rotation are used to test and validate the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic motion effects in CW non-linear EPR spectra: relaxation enhancement of lipid spin labels.

Continuous-wave (CW) EPR measurements of enhancements in spin-lattice (T(1)-) relaxation rate find wide application for determining spin-label locations in biological systems. Often, especially in membranes, the spin-label rotational motion is anisotropic and subject to an orientational potential. We investigate here the effects of anisotropic diffusion and ordering on non-linear CW-EPR methods...

متن کامل

Non-linear, continuous-wave EPR spectroscopy and spin–lattice relaxation: spin-label EPR methods for structure and dynamics†

The sensitivity of continuous-wave, non-linear EPR signals to spin–lattice (T1) relaxation has been investigated. The aim was to identify those spectral displays that are most appropriate to obtain structural and dynamic information from spin-label EPR experiments that involve detection of T1-relaxation enhancements. This has been achieved by solving the Bloch equations for the various harmonic...

متن کامل

Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.

The dependence on spin-lattice (T1) relaxation of the first-harmonic absorption EPR signal (V'1) detected in phase quadrature with the Zeeman modulation has been investigated both theoretically and experimentally for nitroxide spin labels. Spectral simulations were performed by iterative solution of the Bloch equations that contained explicitly both the modulation and microwave magnetic fields ...

متن کامل

Enhanced Sensitivity to Slow Motions Using 15N-Nitroxide Spin Labels

The rotational motion of an iSN nitroxide in diisobutylphthalate solutions at varied temperatures has been studied for correlation times from 1Om8 to > 10m3 sec. Data from both conventional (first-harmonic, in-phase) and saturation-transfer (second-harmonic, out-of-phase) EPR are reported. For many spectral parameters, including linewidth, position of outer extrema, and ratios of spectral ampli...

متن کامل

Application of the out-of-phase absorption mode to separating overlapping EPR signals with different T1 values.

The use of 90 degrees-out-of-phase first-harmonic absorption (V1'-) EPR to resolve the spectra from nitroxide spin labels with differing T1-relaxation times is described. Non-linear V1'-EPR spectra recorded under moderate saturation have sharper lines compared with the in-phase V1-EPR spectra, and amplitudes that preferentially enhance components with longer T1-relaxation. Discrimination betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 145 1  شماره 

صفحات  -

تاریخ انتشار 2000